bers, the computer must have some means of distinguishing a positive from a
negative number. And, as previously explained, the computer word usually con-
tains a sign bit, generally adjacent to the most significant bit in the computer word.
In the systems to be described, a 1 in the sign bit will indicate a negative number
and a O in the sign bit a positive number.

We have examined the representation of numbers in Sec. 5.1 by using a
signed-integer magnitude representation system. Two other representation systems,
however, are used more often—the 1s and 2s complement systems. (The 2s com-
plement system is the most frequently used at present.) The advantage of these
systems is that both positive and negative numbers can be added or subtracted by
using only an adder of the type already explained.

Here are the three basic systems.

1 Negative numbers may be stored in their rrue magnitude form. Thus the
binary number —0011 will be stored as 10011, where the [ indicates that the
number stored is negative and the 0011 indicates the magnitude of the number.?

2  The /s complement of the magnitude may be used to represent a negative
number. The binary number —0111 will, therefore, be represented as 11000, where
the 1 indicates that the number is negative and 1000 is the 1s complement of the
magnitude. (The Is complement is formed by simply complementing each bit of
the positive magnitude.)

3  The 2s complement may be used to represent a negative binary number. For
instance, —O0111 would be stored as 11001, where the 1 in the sign bit indicates
that the number is negative and the 1001 is the 2s complement of the magnitude
of the number. (The 2s complement is formed by Is-complementing the magnitude
part 0111, giving 1000, and then adding 1 to the least significant digit, giving
1001.)

ADDITION IN THE 1S COMPLEMENT SYSTEM

5.7 The Is complement system for representing negative numbers is often used
in parallel binary machines. The main reason is the ease with which the 1s com-
plement of a binary number may be formed, since only complementing each bit
of a binary number stored in a flip-flop register is required. Before we discuss the
implementations of an adder for the Is complement system, we note the four
possible basic situations which may arise in adding combinations of positive and
negative numbers in the 1s complement system:

1 When a positive number is added to another positive number, the addition
of all bits, including the sign bit, is straightforward. Since both sign bits will be

*Again we note that an underscore __ is used to separate the sign bit from the magnitude bits. Thus
0011 is + 3. The sign bit is simply stored in a flip-flop in the computer as are the other bits; so this is
simply a notational convention and is used to indicate signed numbers.
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~ 0s, no sum or carry will be generated in the sign-bit adder and the output will

remain 0. Here is an example of the addition of two 4-bit positive numbers.®

NORMAL NOTATION COMPUTER WORD

+0011 00011
+ 0100 00100
+0111 00111

2  When a positive and a negative number are added, the sum may be either
positive or negative. If the positive number has a greater magnitude, the sum will
be positive; and if the negative number is greater in magnitude, the sum will be
negative. In the 1s complement system, the answer will be correct as is if the sum
of the two numbets is negative in value. In this case no overflow will be generated
when the numbers are added. For instance,

+0011 00011
- 1100 10011
— 1001 10110

In this case, the output of the adder will be 10110, the last 4 bits of which are the
Is complement of 1001, the correct magnitude of the sum. The 1 in the sign bit
is also correct, indicating a negative number.

3  If the positive number is larger than the negative number, the sum before the
end-around carry is added will be incorrect. The addition of the end-around carry
will correct this sum. There will be a 0 in the sign bit, indicating that the sum is
positive.

+1001 = 0100t +0011 = 00011
—0100 = 11011 —0010 = 11101
+0101 ~00100 +0001 ~ 00000
iy [,

00101 00001

Notice what happens when two niumbers of equal magnitude but opposite signs are
added: :

+ 1011 = 01011 +0000 = 00000
—1011 = 10100 —0000 = 11111
0000 11111 0000 11111

The result in these cases will be a negative zero (11111), which is correct.

4  When two negative numbers are added, an end-around carry will always be
generated, as will a carry from the adder for the first bits of the magnitudes of the
numbers. This will place a 1 in the sign bit.

®In this, and in all discussions that follow, we assume that the result (sum) does not exceed the capacity
of the number of digits being used. This is discussed later.



-0011 = 11100 -0100 = 11011
—1011 = 10100 —0111 = 11000
—1110 ~ 10000 —-1011 ~10011
1 1

10001 10100

The output of the adder will be in s complement form in each case, with a 1 in
the sign-bit position.

From the above we see that in order to implement an adder which will handle
4-bit magnitude signed 1s complement numbers, we can simply add another full-
adder to the configuration in Fig. 5.5. The sign inputs will be labeled X, and Y,,
and the C, output from the adder connected to X; and Y, will be connected to the
C, input of the new full-adder for X, and Y,. The C, output from the adder for X,
and Y, will be connected to the C; input for the adder for X, and ¥,,. The S, output
from the new adder will give the sign digit for the sum. (Overflow will not be
detected in this adder; additional gates are required.)

ADDITION IN THE 2S COMPLEMENT SYSTEM

5.8 When negative numbers are represented in the 2s complement system, the
operation of addition is very similar to that in the s complement system. In parallel
machines, the 2s complement of a number stored in a register may be formed by
first complementing the register and then adding 1 to the least significant bit of the
register. This process requires two steps and so is more time-consuming’ than the
ls complement system. However, the 2s complement system has the advantage of
not requiring an end-around carry during addition.

Four situations may occur in adding two numbers when the 2s complement
system is used: '

1 When both numbers are positive, the situation is completely identical with
that in case 1 in the 1s complement system.

2  When one number is positive and the other negative, and the large number
is the positive number, a carry will be generated through the sign bit. This carry
may be discarded, since the outputs of the adder are correct, as shown below:

+0111 00111 + 1000 01000
—0011 = +11101 =011l = +11001
+0100 00100 + 0001 00001
I: carry is discarded I: carry is discarded

3 When a positive and negative number are added and the negative number is
the larger, no carry will result in the sign bit, and the answer will again be correct
as it stands:

’Generally this 1 is ‘‘sneaked in’’ during calculation, as will be shown.
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+0011 = 00011 +0100 = 00100
—0100 = 11100 — 1000 = 11000
—0001 11111 -0100 11100

Note: A 1 must be added to the least significant bit of a 2s complement negative
number in converting it to a magnitude. For example, -

10011 = 1100 form the 1s complement
0001 add 1
- 1101

When both numbers are the same magnitude, the result is as follows:

+0011 = Q0011
—0011 = 11101
0000 00000

When a positive and a negative number of the same magnitude are added, the
result will be a positive zero.

4  When two negative numbers are added, a carry will be generated in the
sign bit and also in the bit to the right of the sign bit, This will cause a 1 to be
placed in the sign bit, which is correct, and the carry from the sign bit may be
discarded.

—0011 = 11101 —0011 = 1110t
—0100 = 11100 —1011 = 10101
—0111 11001 —1110 10010
Ecarry is discarded carry is discarded

For parallel machines, addition of positive and negative numbers is quite
simple, since any overflow from the sign bit is simply discarded. Thus for the
parallel adder in Fig. 5.5 we simply add another full-adder, with X, and Y, as
inputs and with the CARRY line C, from the full-adder, which adds X; and Y,
connected to the carry input C; to the full-adder for X, and ¥,. A 0 is placed on
the C; input to the adder connected to X, and Y.

This simplicity in adding and subtracting has made the 2s complement system
the most popular for parallel machines. In fact, when signed-magnitude systems
are used, the numbers generally are converted to 2s complement before addition
of negative numbers or subtraction is performed. Then the numbers are changed
back to signed magnitude.

ADDITION AND SUBTRACTION IN A PARALLEL
ARITHMETIC ELEMENT

8.9 We now examine the design of a gating network which will either add or
subtract two numbers. The network is to have an ADD input line and a SUBTRACT
input line as well as the lines that carry the representation of the numbers to be




added or subtracted. When the ADD line is a 1, the sum of the numbers is to be
on the output lines; and when the SUBTRACT line is a 1, the difference is to be
on the output lines. If both ADD and SUBTRACT are Os, the output is to be 0.

First we note that if the computer is capable of adding both positive and
negative numbers, subtraction may be performed by complementing the subtrahend
and then adding. For instance, 8 — 4 yields the same result as 8 + (—4), and 6
~ (—2) yields the same result as 6 + 2. Subtraction therefore may be performed
by an arithmetic element capable of adding, by forming the complement of the
subtrahend and then adding. For instance, in the 1s complement system, four cases
may arise:

TWO POSITIVE NUMBERS

00011 00011

—00001 complementing the subtrahend _11110

and adding 00001

carry 1

00010

TWO NEGATIVE NUMBERS

11101 11101

-11011 complementing 00100

00001

Ecar_rx 1

00010

POSITIVE MINUEND, NEGATIVE MINUEND,
NEGATIVE SUBTRAHEND POSITIVE SUBTRAHEND

00010 _ 00010 10101 _ 10101

—11101 00010 . —00010 11101

00100 10010

l:cgr_rx 1

10011

The same basic rules apply to subtraction in the 2s complement system,
except that any carry generated in the sign-bit adders is simply dropped. In this
case the 2s complement of the subtrahend is formed, and then the complemented
number is added to the minuend with no end-around carry.

We now examine the implementation of a combined adder and subtracter
network. The primary problem is to form the complement of the number to be
subtiacted. This complementation of the subtrahend may be performed in several
ways. For the s complement system, if the storage register is composed of flip-
flops, the 1s complement can be formed by simply connecting the complement of
each input to the adder. The 1 which must be added to the least significant position
to form a 2s complement may be added when the two numbers are added by
connecting a 1 at the CARRY input of the adder for the least significant bits.

A complete logical circuit capable of adding or subtracting two signed 2s
complement numbers is shown in Fig. 5.6. One number is represented by X,, X3,
X,, X,, and X,, and the other number by Y,, Y3, Y,, ¥}, and Y,. There are two
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ADD

FIGURE 5.6

Y

SUBTRACT

SUBTRACT | I

To add: the ADD line is made A1l

To subtract: the SUBTRACT line is made A1
Numbers are to be in 2s complement form

Parallel addition and
subtraction.



control signals, ADD and SUBTRACT. If neither control signal is a 1 (that is,
both are 0s), then the outputs from the five full-adders, which are §,, S5, S5, S|,
and S,, will all be Os. If the ADD control line is made a 1, the sum of the number
X and the number Y will appear as S,, Ss, S,, §;, and S,. If the SUBTRACT line
is made a 1, the difference between X and Y (that is, X — Y) will appear on §,,
S3, S5, §), and Sp.

Notice that the AND-t0-OR gate network connected to each Y input selects
either Y or Y, so that, for instance, an ADD causes Y to enter the appropriate full-
adder, while a SUBTRACT causes Y, to enter the full-adder.

To either add or subtract, each X input is connected to the apprepriate full-
adder. When a subtraction is called for, the complement of each Y flip-flop is gated
into the full-adder, and a 1 is added by connecting the SUBTRACT signal to the
C, input of the full-adder for the lowest order bits X, and Y. Since the SUBTRACT
line will be a 0 when we add, a O carry will be on this line when addition is
performed.

The simplicity of the operation of Fig. 5.6 makes 2s complement addition
and subtraction very attractive for computer use, and it is the most frequently used
system.?

The configuration in Fig. 5.6 is the most frequently used for addition and
subtraction because it provides a simple, direct means for cither adding or sub-
tracting positive or negative numbers. Quite often the S,. S3, . . . , S, lines are
gated back into the X flip-flops, so that the sum or difference of the numbers X
and Y replaces the original value of X.

An important consideration is overflow. In digital computers, an overflow is
said to occur when the performance of an operation results in a quantity beyond
the capacity of the register (or storage register) which is to receive the result. Since
the registers in Fig. 5.6 have a sign bit plus 4 magnitude bits, they can store from
+15 to — 16 in 2s complement form. Therefore, if the result of an addition or a
subtraction were greater than + 15 or less than — 16, we would say that an overflow
had occurred. Suppose we add +8 to +12; the result should be +20, and this
cannot be represented (fairly) in 2s complement on the lines §S,, S5, . . . , §,. The
same thing happens if we add — 13 and —7 or if we subtract —8 from +12. In
each case, logical circuitry is used to detect the overflow condition and signal the
computer control element. Various options are then available, and what is done
can depend on the type of instruction being executed. (Deliberate overflows are
sometimes used in double-precision routines. Multiplication and division use the
results as are.) We defer this topic to Chap 9. except that one of the questions at
the end of the chapter asks for a circuit to test for overflow.

The parallel adder-subtracter configuration in Fig. 5.6 is quite important, and
it is instructive to try adding and subtracting several numbers in 2s complement
form, using pencil and paper and this logic circuit.

*A 1s complement parrallel adder-subtracter can be made by connecting the CARRY-OUT line for the
X, Y, adder to the CARRY-IN line for the X,, Y, adder (disconnecting the SUBTRACT line to this
full-adder, of course).
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FIGURE 5.7

FULL-ADDER DESIGNS

5.10 The full-adder is a basic component of an arithmetic element. Figure 5.3
illustrated the block diagram symbol for the full-adder, along with a table of com-
binations for the input-output values and the expressions describing the SUM and
CARRY lines. Succeeding figures and text described the operation of the full-
adder. Notice that a parallel addition system requires one full-adder for each bit in
the basic word.

There are, of course, many gate configurations for full binary adders. Ex-
amples of an IBM adder and an MSI package containing two full-adders follow.

1 Full binary adder Figure 5.7 illustrates the full binary adder configuration
used in several IBM general-purpose digital computers. There are three inputs to
the circuit: The X input is from one of the storage devices in the accumulator, the
Y input is from the corresponding storage device in the register to be added to the
accumulator register, and the third input is the CARRY input from the adder for
the next least significant bit. The two outputs are the SUM output and the CARRY
output. The SUM output will contain the sum value for this particular digit of the
output. The CARRY output will be comnected to the CARRY input of the next
most significant bit’s adder (refer to Fig. 5.5).

Full-adder used in
IBM machines.

| |
§ L[
¢ ¢ O Cl

X+Y+C

YC

-
(XC + YC +XY)

v XC +YC +XY
Carry Sum

(XC ¥ YC + XY) + XYC] X+ Y +C) =
XYC + XYC + XYC + XYC



The outputs from the three AND gates connected directly to the X, Y, and C
inputs are logically added by the OR gate-circuit directly beneath. If either the X
and Y, X and C, or Y and C input lines contain a 1, there should be a carry output.
The output of this circuit, written in logical equation form, is shown on the figure.
This may be compared with the expression derived in Fig. 5.3.

The derivation of the SUM output is not so straightforward. The CARRY
output expression XY + XC + YC is first inverted (complemented), yielding
(XY + XC + YC). The logical product of X, ¥, and C is formed by an AND gate
and is logically added to this, forming (XY + XC + YC) + XYC. The logical
sum of X, Y, and C is then multiplied times this, forming the expression

(XY + XC + YC) + XYCIX + Y + C)

When it is multiplied out and simplified, this expression will be XYC + XYC +
XYC + XYC, the expression derived in Fig. 5.3. Tracing through the logical
operation of the circuit for various values will indicate that the SUM output will
be 1 when only one of the input values is equal to | or when all three input values
are equal to 1. For all other combinations of inputs, the output value will be a 0.

2  Two full-adders in an IC container Figure 5.8 shows two full-adders. This
package was developed for integrated circuits using transistor-transistor logic (TTL).
The entire circuitry is packaged in one IC container. The maximum delay from an
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FIGURE 5.9

input change to an output change for an § output is on the order of 8 nanoseconds
(ns).® The maximum delay from any input to the C2 output is about 6 ns.

The amount of delay associated with each carry is an important figure in
evaluating a full-adder for a parallel system, because the time required to add two
numbers is determined by the maximum time it takes for a carry to propagate
through the adders. For instance, if we add 01111 to 10001 in the 2s complement
system, the carry generated by the 1s in the least significant digit of each number
must propagate through four carry stages and a sum stage before we can safely
gate the sum into the accumulator. A study of the addition of these two numbers
by using the configuration in Fig. 5.5 will make this clear. The problem is called
the carry-ripple problem.

A number of techniques are used in high-speed machines to alleviate this
problem. The most used is a bridging, or carry-look-ahead, circuit which calculates
the carry-out of a number of stages simultaneously and then delivers this carry to
the succeeding stages. (This is covered in a later section.)

BINARY-CODED-DECIMAL ADDER

5.11 Arithmetic units which perform operations on numbers stored in BCD form
must have the ability to add 4-bit representations of decimal digits. To do this, a
BCD adder is used. A block diagram symbol for an adder is shown in Fig. 5.9.
The adder has an augend digit input consisting of four lines, an addend digit input
of four lines, a carry-in and a carry-out, and a sum digit with four output lines.
The augend digit, addend digit, and sum digit are each represented in 8, 4, 2, 1
BCD form.

The purpose of the BCD adder in Fig. 5.9 is to add the augend and addend
digits and the carry-in and produce a sum digit and carry-out. This adder could be
designed by using the techniques described in Chap. 3 and the rules for decimal

Ins = 107%s.

Serial-parallel addi-
tion.

Cérry in

Sum
digit
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FIGURE 5.10

BCD adder.

addition. It is also possible to make a BCD adder by using full-adders and AND
or OR gates. An adder made in this way is shown in Fig. 5.10.

There are eight inputs to the BCD adder; four X;, or augend, inputs; and four
Y,, or addend, digits. Each input will represent a 0 or a 1 during a given addition.
If 3 (0011) is to be added to 2 (0010), then X; = 0, X, = 0, X, = 1, and
X, =1Y=0Y,=0,Y,=1,and Y, = 0.

The basic adder in Fig. 5.10 consists of the four binary adders at the top of
the figure and performs base-16 addition when the intent is to perform base-10
addition. Thus some provision must be made to (1) generate carries and (2) correct
sums greater than 9. For instance, if 3,, (0011) is added to 8, (1000), the result
should be 1,, (0001) with a carry generated.

The actual circuitry which determines when a carry is to be transmitted to
the next most significant digits to be added consists of both the full binary adder
to which sum (S) outputs from the adders for the 8, 4, 2 inputs are connected and
the OR gate to which the carry (C) from the eight-position bits is connected. An
examination of the addition process indicates that a carry should be generated when
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the 8 AND 4, or 8 AND 2, or 8 AND 4 AND 2 sum outputs from the base-16
adder represent ls, or when the CARRY output from the eight-position adder
contains a 1. (This occurs when 8s or 9s are added.)

Whenever the sum of two digits exceeds 9, the CARRY TO NEXT HIGHER
ORDER ADDER line contains a 1 for the adder in Fig. 5.10. -

A further difficulty arises when a carry is generated. If 7,, (0111) is added
to 6,5 (0110), a carry will be generated, but the output from the base-16 adder will
be 1101. This 1101 does not represent any decimal digit in the 8, 4, 2, 1 system
and must be corrected. The method used to correct this is to add 6,, (0110) to the
sum from the base-16 adders whenever a carry is generated. This addition is per-
formed by adding Is to the weight 4 and weight 2 position output lines from the
base-16 adder when a carry is generated. The two half-adder and the full-adders
at the bottom of Fig. 5.10 perform this function. Essentially, then, the adder
performs base-16 addition and corrects the sum, if it is greater than 9, by adding
6. Several examples of this are shown below.

ONCIRCINEY)
8+7 =15 1000 + 0111 = 11 1 1
+0 1 1 0

1 01 01 =5

t_with a carry generated

CNCINPINEY
9+5=14 1 0 0 1
0 1 0 1
1 1 1 0
+0 1 1 0
1 01 0 0 =4

L with a carry generated
Figure 5.11 shows a complete BCD adder in an IC package.'® The inputs are digits

A and digits B, and the outputs are S. A carry-in and a carry-out are included. The
circuit line used is CMOS.

POSITIVE AND NEGATIVE BCD NUMBERS

5.12 The techniques for handling BCD numbers greatly resemble those for han-
dling binary numbers. A sign bit is used to indicate whether the number is positive
or negative, and there are three methods of representing negative numbers which
must be considered. The first and most obvious method is, of course, to represent
a negative number in true magnitude form with a sign bit, so that —645 is rep-

"The IC packages in Figs. 5.11, 5.13, 5.14, and 5.15 are typical BCD MSI packages. The notation
Al, A2, A3, A4 (instead of X, X,, X;, X,) is often used for the 4 bits of a'BCD digit, and the weights
1. 2, 4, 8 are understood. Thus a BCD digit in B1, B2, B3, B4 would have weight 1 on B1, weight 2
on B2, weight 4 on B3, and weight 8 on B4.
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resented as 1645. The other two possibilities are to represent negative numbers in
a 9s or a 10s complement form, which resembles the binary 1s and 2s complement
forms.

ADDITION AND SUBTRACTION IN THE 9S
COMPLEMENT SYSTEM

5.13 When decimal numbers are represented in a binary code in which the 9s
complement is formed when the number is complemented, the situation is roughly
the same as when the 1s complement is used to represent a binary number. Four
cases may arise: Two positive numbers may be added; a positive and negative
number may be added, yielding a positive result; a positive and negative number
may be added, yielding a negative result; and two negative numbers may be added.
Since there is no problem when two positive numbers are added, we illustrate the
three latter situations.

NEGATIVE AND POSITIVE NUMBER—PQOSITIVE SUM

+692 = 0692
—342 = 1657
+350 0349
1

0350

POSITIVE AND NEGATIVE NUMBER—NEGATIVE SUM

—631 = 1368
+342 = 0342
—289 1710 = —289
TWO NEGATIVE NUMBERS
—248 = 1751
—329 = 1670
-577 1421
1
1422 = -577

The rules for handling negative numbers in the 10s complement system are
the same as those for the binary 2s complement system in that no carry must be
ended-around. Therefore, a parallel BCD adder may be constructed by using only
thg full BCD adder as the basic component, and all combinations of positive and
nicgative numbers may be handled thus.

There is an additional complexity in BCD addition, however, because the 9s
complement of a BCD digit cannot be formed by simply complementing each bit

" in the representation. As a result, a gating block called a complementer must be

used.
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To illustrate the type of circuit which may be used to form complements of
the code groups for BCD numbers, a block diagram of a logical circuit which will
form the 9s complement of a code group representing a decimal number in 8, 4,
2, 1 BCD form is shown in Fig. 5.12. There are four inputs to the circuit, X,, X,,
X,, and Xg. Each input carries a different weight: X, has weight 1, X, has weight
2, X, has weight 4, and X; has weight 8. If the inputs represent a decimal digit of
the number to be complemented, the outputs will represent the 9s complement of
the input digit. For instance, if the input is 0010 (decimal 2), the output will be
0111 (decimal 7), the 9s complement of the input.

Figure 5.13 shows a complete 9s complementer in an IC package. When the
COMP input is a 1, the outputs F1-F4 represent the complement of the digit on
Al-A4; but if COMP is a 0, the A1-A4 inputs are simply placed in F1-F4 without
change.

By connecting the IC packages in Figs. 5.11 and 5.13, a BCD adder-sub-
tracter can be formed as shown in Fig. 5.14. This shows a two-digit adder-sub-
tracter IC package. To add the digits on the inputs, the ADD-SUBTRACT input
is made a I; to subtract, this signal is made a 0. (Making the ZERO input a 1 will
cause the value of B to pass through unchanged.)

BCD numbers may be represented in parallel form, as we have shown, but
a mode of operation called series-parallel is often used. If a decimal number is
written in binary-coded form, the resulting number consists of a set of code groups,
each of whichk represents a single decimal digit. For instance, decimal 463 in a
BCD 8, 4, 2, 1 code is 0100 0110 0011. Each group of 4 bits represents one
decimal digit. It is convenient to handle each code group which represents a decimal
digit as a unit, that is, in parallel. At the same time, since the word lengths for
decimal computation are apt to be rather long, it is desirable to economize in the
amount of equipment used.

The series-parallel system provides a compromise in which each code group
is handled in parallel, but the decimal digits are handled sequentially. This requires
four lines for each 8, 4, 2, 1 BCD character, each input line of which carries a
different weight. The block diagram for an adder operating in this system is shown

FIGURE 5.12

Logic circuit for form-
ing 9s complement of
8, 4, 2, 1 BCD digits.
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FIGURE 5.13

TRANSMISSION GATE
0" (G 17 (G1)

In ’g Out

Out

"1 (G2) "0 (G2)
Low impedance High impedance
Input=—=Output | Input<=—=Output
(On) (Off)

(a)

9s complementer in
IC package. (a) Logic
diagram. (b) Table of
combinations.

in Fig. 5.15. There are two sets of inputs to the adder; one consists of the four
input lines which carry the coded digit for the addend, and the other four input
lines carry a coded augend digit. The sets of inputs arrive sequentially from the A
and B registers, each of which consists of four shift registers; the least significant
addend and augend BCD digits arrive first, followed by the more significant decimal
digits.

If the 8, 4, 2, 1 code is used, let 324 represent the augend and 238 the
addend. The ADD signal will be a 0. First the adder will receive 0100 on the
augend lines, and at the same time it will receive 1000 on the addend lines. After
the first clock pulse, these inputs will be replaced by 0010 on the augend lines and
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0011 on the addend lines. Before the first clock signal, the sum lines should contain
0010; and before the second, 0110. A carry will be generated during the addition
of the first two digits; this will be delayed and added in using the D flip-flop. The
process will continue until each of the three digits has been added. To subtract B
from A, we have only to make the ADD-SUBTRACT input a 1 and then apply the
clocks.

SHIFT OPERATION

5.14 A shift operation is an operation which moves the digits stored in a register
to new positions in the register. There are two distinct shift operations: a shift-left
operation and a shift-right operation. A shift-left operation moves each bit of in-
formation stored in a register to the left by some specified number of digits. Con-
sider the six binary digits 000110, which we assume to be stored in a parallel
binary register. If the contents of the register are shifted left 1, afterward the shift
register will contain 001100. If a shift right of 1 is performed on the word 000110,
afterward the shift register will contain 000011. The shifting process in a decimal
register is similar: if the register contains 001234, after a right shift of 1 the register
will contain 000123, or after a left shift of 1 the register will contain 012340. The
shift operation is used in the MULTIPLY and the DIVIDE instructions of most
machines and is provided as an instruction which may be used by programmers.
For instance, a machine may have instructions SHR and SHL, where the letters
represent in mnemonic form the order for SHIFT RIGHT and SHIFT LEFT
instructions.

A block diagram of logic circuitry for a single stage (flip-flop) in a register
which can be shifted either left or right is shown in Fig. 5.16. As can be seen, the
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FIGURE 5.16

bit to the left is shifted into X when SHIFT RIGHT is a 1, and the bit to the right
is shifted into X when SHIFT LEFT is a 1.

Figure 5.17 shows an MIS package which contains four flip-flops and gating
circuitry so that the register can be shifted right or left and so that the four flip-
flops can be parallel-loaded from four input lines W, X, Y, and Z. The circuits are
TTL circuits and are clocked in parallel. By combining modules such as this one,
a register of a chosen length can be formed which can be shifted left or right or
parallel-loaded.

BASIC OPERATIONS

5.15 The arithmetic-logic unit of a digital computer consists of a number of
registers in which information can be stored and a set of logic circuits which make
it possible to perform certain operations on the information stored in the registers
and between registers.

As we have seen, the data stored in a given flip-flop register may be operated
on in the following ways:
1 The register may be reset to all Os.

2 The contents of a register may be complemented to either 1s or 2s comple-
ment form for binary or to 9s or 10s complement form for decimal.

3 The contents of a register may be shifted right or left.

4 The contents of a register can be incremented or decremented.
Several operations between registers have been described. These include

1 Transferring the contents of one register to another register

Shift-left and shift-
right stages of regis-
ter.
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2  Adding to or subtracting from the contents of one register the contents of
anotheér register

Most arithmetic operations which an ALU performs consist of these or se-
quenced sets of these two types of operations. Complicated instructions, such as
multiplication and division. can require a large number of these operations, but



these instructions may be performed by using only sequences of the simple oper-
ations already described.

' One other important point needs to be made. Certain operations which occur
within instructions are conditional; that is, a given operation may or may not take
place, depending on the value of certain bits of the numbers stored. For instance,
it may be desirable to multiply using only positive numbers. In this case, the sign
bits of the two numbers to be multiplied will be examined by control circuitry and
if either is a 1, the corresponding number will be complemented before the mul-
tiplication begins. This operation, complementing of the register, is a conditional
one.

Many different sequences of operations can yield the same result. For in-
stance, two numbers could be multiplied by simply adding the multiplicand to itself
the number of times indicated by the multiplier. If this were done with pencil and
paper, 369 x 12 would be performed by adding 369 to itself 12 times. This would
be a laborious process compared with the easier algorithm which we have developed
for muitiplying, but we would get the same result. The same principle applies to
computer multiplication. Two numbers could be multiplied by transferring one of
the numbers into a counter which counted downward each time an addition was
performed, and then adding the other number to itself until the counter reached
zero. This technique has been used, but much faster techniques are also used and
will be explained.

Many algorithms have been used to multiply and divide numbers in digital
computers. Division, especially, is a complicated process; and in decimal com-
puters in particular, many different techniques are used. The particular technique
used by a computer is generally based on the cost of the computer and the premium
on speed for the computer. As in almost ail operations, speed is expensive, and a
faster division process generally means a more expensive computer.

To explain the operations of binary multiplication and division, we use a
block diagram of a generalized binary computer. Figure 5.18 illustrates, in block
diagram form, the registers of an ALU. The computer has three basic registers: an
accumulator, a Y register, and a B register. The operations which can be performed
have been described:

1 The accumulator can be cleared.

2  The contents of the accumulator can be shifted right or left. Further, the
accumulator and the B register may be formed into one long shift register. If we
then shift this register right two digits, the two least significant digits of the ac-
cumulator will be shifted into the first two places of the B register. Several left
shifts will shift the most significant digits of the B register into the accumulator.
Since there are 5 bits in the basic computer word, there are five binary storage
devices in each register. A right-shift of five places will transfer the contents of
the accumulator into the B register, and a left shift of five places will shift the
contents of the B register into the accumulator.

3 ' The contents of the ¥ register can be either added to or subtracted from the
accumulator. The sum or difference is stored in the accumulator register.

4  Words from memory may be read into the Y register. To read a word into
the accumulator, it is necessary to clear the accumulator, to read the word from
memory into the Y register, and to add the Y register to the accumulator.

221
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An arithmetic element which can perform these operations on its registers
can be sequenced to perform all arithmetic operations. It is, in fact, possible to
construct a machine using fewer operations than these, but most general-purpose
computers usually have an arithmetic element with at least these capabilities.

BINARY MULTIPLICATION

5.16 The process of multiplying binary numbers may be best examined by writ-
ing out the multiplication of two binary numbers:

1001 = multiplicand
1101 = multiplier
1001
l%?o } partial products
1001
1110101 = product

The important thing to notice in this process is that there are really only two
rules for multiplying a single binary number by a binary digit: (1) If the multiplier
digit is a 1, the multiplicand is simply copied. (2) If the multiplier digit is a 0, the
product is 0. The above example illustrates these rules as follows: The first digit
to the right of the multiplier is a 1; therefore, the multiplicand is copied as the first
partial product. The next digit of the multiplier to the left is a 0; so the partial
product is a 0. Each time a partial product is formed, it is shifted one place to the
left of the previous partial product. Even if the partial product is a 0, the next
partial product is shifted one place to the left of the previous partial product. This
process is continued until all the multiplier digits have been used, and then the
partial products are summed.

The three operations which the computer must be able to perform to multiply
in this manner are, therefore, (1) to sense whether a multiplier bit is either a 1 or
a 0, (2) to shift partial products, and (3) to add the partial products.

It is not necessary to wait until all the partial products have been formed
before they are summed. They may be summed two at a time. For instance, starting
with the first two partial products in the above example, we have

1001
0000
01001

Then the next partial product may be added to this sum, displacing it one position
to the left:

01001
1001
101101
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And finally,

101101
1001
1110101

A multiplier can be constructed in just this fashion. By sampling each bit of the
multiplier in turn, adding the multiplicand into some register, and then shifting the
multiplicand left each time a new multiplier bit is sampled, a product could be
formed of the sum of the partial products. In fact, the process of multiplying in
most binary machines is performed in a manner very similar to this.

To examine the typical technique for multiplying, the generalized arithmetic
elements in Fig. 5.18 are used. Let the multiplier be stored in the B register, and
the multiplicand in the Y register; the accumulator contains all Os as shown:

Accumulator B register
0 0 Multiplier
Y register

Multiplicand

Let us also assume that both multiplier and multiplicand are positive. If either
is negative, it must be converted to positive form before the multiplication begins.
The sign bits will therefore be 0Os.

The desired result format is shown, with the product being the combined
accumulator and B register:

Accumulator B register

Product Product

Product, with most significant
Y register part in accumulator

Multiplicand

A multiplication requires n basic steps, where n is the number of bits in the
magnitude of the numbers to be multiplied, and a final right shift to position the
product. Each basic step is initiated by the control circuitry examining the rightmost
bit in the B register. The basic step is as follows.



BASIC STEP

3

After each basic step, the new rightmost bit of the B register is examined
again, and the next of the n steps is initiated.

Let us consider the same multiplication that was used in the previous ex-
ample, that is, 1101 x 1001; where 1101 is the multiplier. In the beginning e
accumulator contains 00000, the B register 01101, and the Y register 01001 (the
Jeftmost Os are sign bits). Four steps and a final shift will be required.

1 Since the rightmost bit of the B register contains a | (the least significant bit
of the multiplier), during the first step the contents of the Y register are added to
the accumulator, and the combined accumulator and B register are shifted to the
right. The second least significant bit of the multiplier now occupies the rightmost
bit of the B register and controls the next operation. The Y register still contains
the multiplicand 01001, the contents of the accumulator are 00100, and the contents
of the B register are 10110,

2  The rightmost bit of the B register is a 0, and since it controls the next
operation, a SHIFT RIGHT signal is initiated and the accumulator and B register
are shifted right, giving 00010 in the accumulator and 01011 in the B register.

3 Al is now in the rightmost bit of the B register. So the Y register is added
to the accumulator again, and the combined accumulator and B register are shifted
right, giving 00101 in the accumulator and 10101 in the B register.

4  The least significant bit of the B register is another 1; so the ¥ register is
added to the accumulator and the accumulator is shifted right. After the above shift
right, the cembined accumulator and B register contain 0011 101010. A final right
shift gives 0001110101, the correct product for our integer number system. The
most significant digits are stored in the accumulator, and the least significant digits
in the B register.

ACCUMULATOR B REGISTER

00000 01101 At beginning
00100 10110 After step 1
00010 01011 After step 2
00101 10101 After step 3
00111 01010 After step 4

00011 10101 After shift right
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Now the reason for the combined accumulator and B register can be seen. The
product of two 5-bit signed numbers can contain up to nine significant digits (including
the sign bit); and so two 5-bit registers, not one, are required to hold the product. The
final product is treated like a 10-bit number extending through the two registers with
the leftmost bits (most significant bits) in the left register, the rightmost bits (least
significant bits) in the right register, and the least significant binary digit in the
rightmost bit. Thus our result in the two combined registers is 0001110101, which is
+117 in decimal.

The control circuitry is designed to perform the examination of the multiplier
bits, then either shift or add and shift the correct number of times, and stop. In
this case, the length of the multiplier, or Y register, is 4 bits plus a sign bit; so
four such steps are performed. The general practice is to éxamine each bit of the
computer word except the sign bit, in turn. For instance, if the basic computer
word is 25 bits (that is, 24 bits in which the magnitude of a number is stored plus
a sign bit), each time a multiplication is performed, the computer will examine 24
bits, each in turn, performing the add-and-shift or just the shift operation 24 times.
This makes the multiplication operation longer than such operations as add or
subtract. Some parallel computers double their normal rate of operation during
multiplication: if the computer performs such operations as addition, complemen-
tation, transfers, etc., at a rate of 4 MHz/s for ordinary instructions, the rate will
be increased to 8 MHz for the add-and-shift combinations performed during mul-
tiplying. Some computers are able to shift right while adding; that is, the sum of
the accumulator and Y register appears shifted one place to the right each time,
and the shift-right operation after each addition may be omitted.

The sign bits of the multiplier and multiplicand may be handled in a number
of ways. For instance, the sign of the product can be determined by means of
control circuitry before the multiplication procedure is initiated. This sign bit is
stored during the multiplication process, after which it is placed into the sign bit
of the accumulator, and then the accumulator is complemented, if necessary. There-
fore, the sign bits of the multiplier and multiplicand are examined first. If they are
both Os, the sign of the product should be 0; if both are 1s, the sign of the product
should be 0; and if either but not both are a 1, the sign of the product should be
1. This information, retained in a flip-flop while the multiplication is taking place,
may be transferred into the sign bit afterward. If the computer handles numbers in
the 1s or 2s complement system, both multiplier and multiplicand may be handled
as positive magnitudes during the multiplication. And if the sign of either number
is negative, the number is complemented to a positive magnitude before the mul-
tiplication begins. Sometimes the multiplication is performed on complemented
numbers by using more complicated algorithms. These are described in the Bib-
liography.

DECIMAL MULTIPLICATION

5.17 Decimal multiplication is a more involved process than binary multipli-
cation. Whereas the product of a binary digit and a binary number is either the
number or 0, the product of a decimal digit and decimal number involves the use
of a multiplication table plus carrying and adding. For instance,



7X24=7x%x4+7x%x20 =28+ 140 = 168

Even the multiplying of two decimal digits may involve two output digits; for
instance, 7 X 8 equals 56. In the following discussion we call the two digits which
may result when 2 decimal digit is multiplied by a decimal digit the left-hand and
the right-hand digits. Thus for 3 X 6 we have 1 for the left-hand digit and 8 for
the right-hand digit. For 2 X 3 we have O for the left-hand digit and 6 for the
right-hand digit.

Except for simply adding the multiplicand to itself the number of times
indicated by the multiplier, a simple but time-consuming process, the simplest
method for decimal multiplication involves loading the rightmost digit of the mul-
tiplier into a counter that counts downward and then adding the multiplicand to
itself and simultaneously indexing the counter until the counter reaches 0. The
partial product thus formed may be shifted right one decimal digit, the next mul-
tiplier digit loaded into the counter, and the process repeated until all the multiplier
digits have been used. This is a relatively slow but straightforward technique.

The process may be speeded up by forming products using the multiplicand
and the rightmost digit of the multiplier as in the previous scheme, except by
actually forming the left-hand and right-hand partial products obtained when a digit
is multiplied by a number and then summing them. For instance, 6 X 7164 would
yield 2664 for the right-hand product digits and 4032 for the left-hand product
digits. The sum would be

2664
+ 4032
42984

Decimal-machine multiplication is, in general, a complicated process if speed
is desired, and there are almost as many techniques for multiplying BCD numbers
as there are types of machines.'' IC packages are produced that contain a gate
network having two BCD characters as inputs which produce the two-digit output
required. The Questions and Bibliography explore this in more detail.

DIVISION

*5.18"2 The operation of division is the most difficult and time-consuming that
the ALU of most general-purpose computers performs. Although division may
appear no more difficult than multiplication, several problems in connection with
the division process introduce time-consuming extra steps.

Division, using pencil and paper, is a trial-and-error process. For instance,
if we are to divide 77 into 4610, we first notice that 77 will not *‘go’’ into 46; so
we attempt to divide 77 into 461. We may guess that it will go six times; however,

11Several systems use table look-up techniques for forming products, where the product of each pair of
digits is stored in the memory.
12§ections with asterisks can be omitted on a first reading with no loss in continuity.
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Therefore we have guessed too high and must reduce the first digit of the quotient,
which we will develop, to 5.

The same problem confronts the computer when it attempts to divide in this
manner. It must *‘try”” a subtraction each step of the process and then see whether
the remainder is negative. Consider the division of 1111 by 11:

. Itis easy to determine visually at any step of the process whether the quotient
is to be a 1 or a 0, but the computer cannot determine this without making a trial
subtraction each time. After a trial quotient has been tried and the divisor sub-
tracted, if the result is negative, either the current dividend must be ‘‘restored’’ or
some other technique for dividing used.

There are several points to be noted concerning binary fixed-point integer-
value division. The division is generally performed with two signed binary integers
of the same fixed length. The result, or quotient, is stored as a number, with as
many digits as the divisor or dividend, and the remainder is also stored as a number
of the same length.!?

Using the registers shown in Fig. 5.18, we show how to divide a number
stored-in the accumulator by a number in the Y register. Then the quotient is stored
in the B register and the remainder in the accumulator. This is the most common
division format.

Assume the B and Y registers in Fig. 5.18 are S bits in length (4 bits plus a
sign bit) and the accumulator is also 5 bits in length. Before we start the procedure,
the dividend is read into the accumulator, and the divisor into the Y register. After
the division, the quotient is stored in the B register, and the remainder is in the
accumulator. Both divisor and dividend are to be positive.

The following shows an example. The accumulator (dividend) originally con-
tains 11 (decimal) and the Y register (divisor) contains 4. The desired result then
gives the quotient 2 in the B register and the remainder 3 in the accumulator.

BIf we divide one integer into another, both the quotient and remainder will be integers. The rule
is as follows: If a is the dividend, y the divisor, b the quotient, and r the remainder, then @ = y X
b+ r



Accumulator B register

01011 00000

At beginning
Y register of division

00100

Accumulator B register

00011 00010

After division
Y register

00100

There are two general techniques for division for binary machines: the re-
storing and the nonrestoring techniques. Our first example illustrates the restoring
technique.

Just as in multiplication, the restoring technique for division requires that a
basic step be performed repeatedly (in this case as many times as there are signif-
icant bits in the-subtrahend).

BASIC STEP

The computer determines whether the result of a trial division is positive or
negative by examining the sign bit of the accumulator after each subtraction.

DIVISION
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register is 2, and the remainder in
accumulator is 0.

To demonstrate the entire procedure, first it is necessary to explain how to
initiate the division and how to start and stop performing the basic steps. Unfor-
tunately these are complicated procedures, just as determining the position of the
decimal point and how to start and stop the division is complicated for ordinary
division.

1 As described above, if the divisor is larger than the dividend, then the quotient
should be 0, and the remainder is the value of the dividend. (For instance, if we
attempt to divide 7 by 17, the quotient is 0, and the remainder is 7.) To test this,
the dividend in Y can be subtracted from the accumulator. If the result is negative,
all that remains is to restore the accumulator by adding the Y register to the ac-
cumulator. The B register now has value 0 which is right for the quotient, and the
accumulator has the original value which is the remainder.

2 After the above test is made, it is necessary both to align the leftmost 1 bit
in the divisor with the leftmost 1 bit in the dividend by shifting the divisor left and
then recording the number of shifts required to make this alignment. If the number
of shifts is M, then the basic step must be performed M + 1 times.'*

3 The basic step is now performed the necessary M + 1 times.

“This can be accomplished by making Y a shift register and providing a counter to count the shifts
until the first 1 bit of Y is aligned with the 1 bit of the accumulator. Both the accumulator and Y could
be shifted left until there is a 1 bit in their first position, but the remainder will have to be adjusted by
moving it right in the accumulator.



B REGISTER ACCUMULATOR Y REGISTER REMARKS

00000 01101 00011
00000 010t o 00110
00000 01101 01100
0000 00001 01100
00001 01400;
00001 - 10110 o100
0010° 00100 01100
00010 11000 otto0
00100 01000 01100
00100 00001 01100

4  Finally, to adjust the remainder, the accumulator must be shifted right M +
1 times after the last basic step is performed. Examples are shown in Tables 5.2
and 5.3. Step 1, testing for a zero quotient, is not shown in the two examples.

Figure 5.19 shows a flowchart of the algorithm. Flowcharts are often used
to represent algorithms. A more detailed flowchart would separate some of the
steps, such as ‘‘shift the accumulator right M + 1 times,”” into single shifts
performed in a loop which is controlled by a counter. Often, when 'algorithms are
reasonably complicated, as this algorithm is, it is convenient to draw a flowchart
of the algorithm before attempting to implement the control circuitry.

During division, the sign bits are handled in much the same way as during
multiplication. The first step is to convert both the divisor and the dividend to
positive magnitude form. The value of the sign bit for the quotient must be stored
while the division is taking place. The rule is that if the signs of the dividend and
divisor are both either Os or s, the quotient will be positive. If either but not both
of their signs are a 1, the quotient will be negative. The relationship of the sign
bit of the quotient to the sign bit of the divisor and dividend is, therefore, the
quarter-adder, or exclusive OR, relationship, that is, § = XY + XY. The value
for the correct sign of the quotient may be read into a flip-flop while the division
is taking place, and this value may then be placed in the sign bit of the register
containing the quotient after the division of magnitudes has been completed.
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There are several techniques for nonrestoring division. One widely used al-
gorithm employs a procedure in which the divisor is alternately subtracted and
added. Another uses a technique in which the divisor is compared to the dividend
at each trial division. This material is covered in detail in the Bibliography.

LOGICAL OPERATIONS

5.19 In addition to the arithmetic operations, many logical operations are per-
formed by ALUs. Three logical operations are described here: logical multiplica-
tion, logical addition, and sum modulo 2 addition (the exclusive OR operation).
Each of these will be operations between registers, where the operation specified
will be performed on each of the corresponding digits in the two registers. The
result will be stored in one of the registers.

The first operation, logical multiplication, is often referred to as an extract,
masking, or AND operation. The rules for logical multiplication are defined in
the chapter on logical algebra. The rules are 0-0 = 0, 0-1 = 0, 1-0 = 0, and
1'1 = 1. Suppose that the contents of the accumulator register are ‘‘logically
multiplied”” by another register. Let each register be five binary digits in length.
If the accumulator contains 01101 and the other register contains 00111 / the con-
tents of the accumulator after the operation will be 00101.

The masking, or extracting, operation is useful in ‘‘packaging’” computer
words. To save space in memory and keep associated data together, several pieces
of information may be stored in the same word. For instance, a word may contain
an item number, wholesale price, and retail price, packaged as follows:

S 1-6 | 7-15 16—24

——— ————
item wholesale retail
number  price price

To extract the retail price, the programmer will simply logically multiply the
word above by a word containing Os in the sign digit through digit 15 and Is in
positions 16 through 24. After the operation, only the retail price will remain in
the word.

The logical addition operation and the sum modulo 2 operation are also
provided in most computers. The rules for these operations are as follows:

LOGICAL ADDITION MODULO 2 ADDITION

0+0=0 060=0
0+1=1 0p1=1
1+0=1 190 =1
1+1=1 11 =0

Figure 5.20 shows how a single accumulator flip-flop and B flip-flop can be gated
so that all three of these logical operations can be performed. The circuit in Fig.
5.20 would be repeated for each stage of the accumulator register.

There are three control signals: LOGICAL MULTIPLY, LOGICAL ADD,
and MOD 2 ADD. If one of these is a 1, when a clock pulse arrives, this operation
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FIGURE 5.20

Circuit for gating . . .
logic operations into 1 performed and the result placed in the ACC (accumulator) flip-flop. If none of

accumulator flip-flop.  the control signals is a 1, nothing happens, and the ACC remains as it is.
The actual values desired are formed by three sets of gates; that is, ACC-B,
ACC + B, and ACC & B are all formed first. Each is then AND-gated with the



appropriate control signal. Finally the three control signals are ORed, and this
signal is used to gate the appropriate value into the ACC flip-flop when one of the
control signals is a 1.

Figure 5.20 shows how a choice of several different function values can be
gated into a single flip-flop using control signals. We could include an ADD signal
and a SHIFT RIGHT and a SHIFT LEFT by simply adding more gates.

Figure 5.21 shows an example of the logic circuitry used to form sections of
an ALU. All the gates are contained in a single chip (package) with 24 pins. There
is a 7-ns maximum delay through the package.

This chip is called a 4-bit arithmetic-logic unit and can add, subtract, AND,
OR, etc., two 4-bit register sections. Two chips could be used for the logic in an
8-bit accumulator, four chips would form a 16-bit accumulator, etc.

The function performed by this chip is controlled by the mode input M and
four function select inputs S, S|, S,, and S;. When the mode input M is low
(a 0), the 74S181 performs such arithmetic operations as ADD or SUBTRACT.
When the mode input M is high (a 1), the ALU does logic operations on the A and
B inputs “*a bit at a time.’’ (Notice in Fig. 5.21 that the carry-generating gates are
disabled by M = 1.) For instance, if M is a 0, S, and S, are also Os, and S, and
§; are 1s, then the 74S181 performs arithmetic addition. If M is a 1, S, and S; are
Is, and S, and S, are Os, the 74S181 chip exclusive-ORs (mod 2 adds) A and B.
(It forms A, @ By, A, & B, A, & B,, and A, & B-.)

The table in Fig. 5.21 further describes the operation of this chip. Questions
at the end of the chapter develop some operational characteristics of this 4-bit ALU
section.

MULTIPLEXERS

5.20 The function of a multiplexer is to select from several inputs a single input.
Control lines are used to make this selection.

Figure 5.22 shows an eight-input multiplexer on a single IC chip. The eight
inputs are labeled /o, Iy, . . ., I;. There are three control wires, S,, S;, and S,
These three control lines can take eight different values (from 000 to 111), and for
each value a different input is selected. The value of the input selected appears on
Z. An examination of this multiplexer shows that if S,5,S, are all Os, then input I,
is selected. If §,5,5, are 001, then /, is selected; if S,5,S, are 010, then I, is
selected; etc.

For example, if §,5,5, = 010, then the output Z will be 0 if /, is a 0 and a
1if I, is a 1. In this case, the input values on /y, I,, I3, 1,, s, I and I, will not
affect the output value on Z. The E input enables the multiplexer.

@ultiplexers are useful in many ways. Suppose we are to select as inputs to
a gate network a single register from four flip-flop registers with two flip-flops in
each register. Figure 5.23 shows a dual four-input multiplexer which will accom-
plish this. The two multiplexers each have four inputs, and the inputs selected from
each are in the same respective position. There are two control inputs, S, and S,,.
If §| and S, are both Os, then A, and B, are selected and placed on the A and B
outputs; if §; is a 0 and S, is a 1, then the values of A, and B, are placed on the
A and B outputs; etc.
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A 4-bit arithmetic
logic unit.

The ENABLE input is used to enable or disable both multiplexers. A 0 on
the ENABLE enables the outputs, but a 1 on ENABLE forces both outputs to 0.

Figure 5.24 shows four flip-flop registers W, X, Y, and Z, each with two flip-
flops. The control lines S, and §  select from each of the four sets of inputs a single
two-flip-flop register whose outputs are then placed on the output lines. This shows
how multiplexers can be used to select a single register from a set of registers.

If each register contained more than two flip-flops, then another dual four-
input multiplexer would be needed for each additional two flip-flops.

Multiplexers are useful in many ways, and Figs. 5.22 and 5.23 should be
examined carefully.
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FIGURE 5.24

HIGH-SPEED ARITHMETIC—SPEEDING UP ADDITION

*5.21 Since additions and subtractions are often performed in computers, it is
desirable to perform them quickly. In this section we describe how the time required
may be shortened. This also will speed up multiplication and division since in most
cases these involve a number of additions or subtractions.

Figure 5.25 shows a set of full-adders as they might be interconnected to
form a 16-bit full-adder for two registers of 16 flip-flops each (for two 16-bit
numbers). Note that a carry arising in the rightmost adder (if X, and ¥, are both
Is) will propagate all the way through the leftmost adder (for X5 and Y,5) if there
is a 1 input at each adder in the chain.

Each gate in a network delays a signal by some time period. Thus if a set of
new inputs is placed on the inputs to the adder configuration, it is necessary to
wait until the signals have passed through all gates before the outputs, in this case
S5 through S,, can be safely used. If each gate has a delay of D ns, then for Fig.
5.25 it is necessary to wait for 32 X D ns from the time the inputs are changed
before we can be sure the value of S5 is correct.

This is called the carry propagation delay. This delay can be considerable
for long registers if the configuration in Fig. 5.25 is used without modification.
Fortunately, there are several ways to shorten the carry propagation delay, as we
show.

Figure 5.26 shows an IC chip layout which contains gates to add two 4-bit
inputs plus a carry to the group. Note here that the C,, or carry output, has a

Using a dual four-in-
put multiplexer IC to
select from two four-
input flip-flop regis-
ters.



FIGURE 5.25

Sia Si3 84, So

CARRY logic in each stage
jooks like this

Chain of full-adders.
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maximum delay path of three gates for any input. That is, the maximum delay
path from any input to the output C,, is a three-gate delay.

Figure 5.27 shows how four of these IC containers can be interconnected to
form an adder which will handle 16-bit inputs. The maximum delay through this
network is shorter than that for the layout in Fig. 5.25 because of the shorter carry
delays. The maximum path length in number of gates for the C; input to the leftmost
four-adder package is nine gates, or 9 X D ns if a gate delay is D ns. The delay
through the final package, to S5, for example, is four gate delays, however, be-
cause a carry input to C, must pass through an AND gate, a NOR gate, and
exclusive OR gates to reach S,5; and exclusive OR gates require two delays. (Ex-
clusive OR gates are often made from a two-level network of conventional gates.)

The reduction of adder carry propagation delay using the adder in Fig. 5.26
is due to the development of the C, output directly from the eight inputs A,
B, ..., A, B,, and C;. For example, if we wish to put a 3-bit adder in a single
container, with inputs A, B,, A,, B,, A;, B3, and C;, then the C, output can be
written'’ as follows:

C, = C{A; + B3)(A, + B,)(A, + B))
+ A;B;(A, + By)(A, + B)) + AByA, + B)) + AB,

'5This is the expression for a “‘carry look-ahead’” or *‘carry bridging™" net. Placing carry look-aheads
every few adders will speed up adder operation.
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Turning this expression directly into a gate network results in a three-level network
and thus three-gate delays, but the expression can be *‘multiplied out’’ and a two-
level net will result.

The amount of reduction of delay in adders depends on the complexity (and
therefore cost) of the gating network used. As an exampie, Fig. 5.21 has a rea-
sonably fast carry, but this chip also develops a P and G output which can be used
with another chip, shown in the Questions, to further speed up adder operation.

HIGH-SPEED ARITHMETIC—PARALLEL MULTIPLIERS

*5 22 The multiplication technique described earlier is called the add-and-shift
algorithm. This technique is used in most smaller computers because it is direct to
implement. Also it is often used in programs which implement multiplication be-
cause many smaller computers (microcomputers, in particular) have no multipli-
cation instruction.

In larger computers and in signal-processing computers, there is a need for
high-speed multiplication. To achieve this, arrays of gates are used which multiply
several binary digits at the same time. These arrays are of various sizes and range
from moderately inexpensive to quite expensive. Their use is based on economic
considerations and the requirements for the system.

We illustrate how two binary numbers can be multiplied in a gating network.
Suppose the numbers are a,a, and b,b,, two binary 2-bit numbers. For example,
if a, = 1 and g, = O, then a,a, = 10, which is 2 in decimal. Similarly, if
b, = 1 and by, = 1, then b;b, = 11, which is 3 in decimal.

If these numbers are multiplied using our familiar technique, this array is
formed:

biby
Xalag
agh, agby
ab, a,b,
Py P> P Po
where
Po = agby
pi = agb, @ ab,
p> = a\b; © aybab,
pa = a\baga,bagh,
Here
06p0=0 10=1
061 =1 11 =1

Figure 5.28 shows the boolean algebra expression for the product bits p;, p,,
p:. and p, realized in gate network form. If inputs for a,ay and b,b, are input to
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FIGURE 5.28

A two-digit parallel
binary multiplier.
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the network, then p,p,p,p, will give the product in binary integer form. The net
in Fig. 5.28 is called a parallel multiplier.

The above technique for deriving boolean algebra expressions for the product
bits can be used for multiplications involving more digits. Unfortunately, for 8-bit
or even 16-bit multipliers and multiplicands, the expressions become very large
and costly to implement. However, this technique works well for small numbers.

To make parallel multipliers for larger numbers of inputs and outputs, often
an array of full-adders is used. Consider the multiplication of two 3-bit numbers
shown in Fig. 5.29(a). The partial products are written with the product bits
DsPaP3P2p P immediately below. In Fig. 5.29(b) a set of nine AND gates is used
to produce all the a;b; terms in the multiplier in Fig. 5.29(a). In Fig. 5.29(c) an
arrangement of full-adders is shown which have as inputs the outputs from the
AND gates in Fig. 5.29(b) and which will implement the multiplication shown in
Fig. 5.29(a). It is instructive to see how the multiplication is performed by the
full-adders. The operation of this circuit should be carefully examined.

The maximum length of carry path for Fig. 5.29(b) is along the top row to
the ps output. If the full-adders have two-gate delays for each carry, then Fig.
5.29(c) has a worst-case delay of eight-gate delays and another delay arises from
the AND gates in Fig. 5.29(b). As the number of bits in the numbers being mul-
tiplied increases, so does the size of the array of full-adders and so does the delay
through the array. There are several ways to rearrange the adders slightly and to
add more gates to reduce this delay, which are covered in the Bibliography. [The
paper ‘‘High-Speed Monolithic Multipliers for Real-Time Digital Signal Process-
ing”’ by S. Waser in the October 1979 issue of Computer is very instructive. The
array in Fig. 5.29(¢) is fundamental, however.] '
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A parallel multiplier.
Parallel multiplier arrays are packaged in IC containers by several manufac-  (a) Multiplication of
turers. The largest array in a single IC container now multiplies two 16-bit numbers. ~ 3-bit numbers. (b)
The delay through this package is about 100 ns. Eight-bit parallel multipliers are gor:::"?c)p's;’zﬁ;t
common. Several of these multipliers can be grouped along with some full-adders multip.lier made of
to form multipliers for even larger numbers. Parallel multipliers also can be used  {ull-adders.
to shorten multiplication time by using an add-and-shift algorithm and multiplying

several bits at each step.

FLOATING-POINT NUMBER SYSTEMS

5.23 Earlier we described number representation systems in which positive and
negative integers are stored in binary words. In the representation system used. the
binary point is “‘fixed’’ in that it lies at the end of each word, and so each value
represented is an integer. When computers calculate with binary numbers in this
format, the operations are called fixed-point arithmetic.
In science it is often necessary to calculate with very large or very small
numbers. So scientists have adopted a convenient notation in which a mantissa
and an exponent represent a number. For instance, 4,900,000 may be written as 245
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FIGURE 5.30

0.49 x 107, where 0.49 is the mantissa and 7 is the value of the exponent; or
0.00023 may be written as 0.23 x 107, The notation is based on the relation
Yy = a x r’, where y is the number to be represented. a is the mantissa, r is the
base of the number system (r = 10 for decimal and r = 2 for binary), and p is
the power to which the base is raised.

It is possible to calculate with this representation system. To multiply a X
10"and b X 10", we forma X b x 10"*". To divide ¢ X 10" by b x 10", we
form a/b x 10"7". To add @ x 10" to b x 10", we must first make m equal to
n.lfm = n, thena X 10" + b X 10" = a + b X 10". The process of making
m equal to n is called scaling the numbers.

Considerable bookkeeping can be involved in scaling numbers, and there can
be difficulty in maintaining precision during computations when numbers vary over
a very wide range of magnitudes. For computer usage these problems are alleviated
by means of two techniques whereby the computer (not the programmer) keeps
track of the radix (decimal) point, automatically scaling the numbers. In the first,
programmed floating-point routines automatically scale the numbers used during
the computations while maintaining the precision of the results and keeping track
of the scale factors. These routines are used with small computers having only
fixed-point operations. A second technique lies in building what are called floating-
point operations into the computer’s hardware. The logic circuitry of the computer
is then used to perform the scaling automatically and to keep track of the exponents
when calculations are performed. To effect this, a number representation system
called the floating-point system is used.

A floating-point number in a computer uses the exponential notation system
described, and during calculations the computer keeps track of the exponent as
well as the mantissa. A computer number word in a floating-point system may be
divided into three pieces: the first is the sign bit, indicating whether the number is
negative or positive; the second part contains the exponent for the number to be
represented; and the third part is the mantissa.

As an example, let us consider a 12-bit word length computer with a floating-
point word. Figure 5.30 shows this. It is common practice to call the exponent
part of the word the characteristic and the mantissa section the integer part.

The integer part of the floating-point word shown represents its value in
signed-magnitude form (rather than 2s complement, although this has been used).
The characteristic is also in signed-magnitude form. The value of the number
expressed is / X 2€, where / is the value of the integer part and C is the value of
the characteristic.

Figure 5.31 shows several values of floating-point numbers both in binary
form and after they are converted to decimal. Since the characteristic has 5 bits
and is in signed-magnitude form, the C in / X 2¢ can have vatues from —15 to

A 12-bit floating-point
word.

C I
Characteristic  Integer part
Al

® Binary point

—

Y By
One 12-bit word



C I

~ A} N
IR, \'!uc is 27 X 11= 1408

C=+7 I=+11

B Valueis 23 X (—7) = —56

T3 i -5 =35
§ Value is 2 X5 32

9

16 bits

First word

16 bits

: -6 _QqQ=_2
(1] Valueis2 6 X -9= &
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+15. The value of / is a sign-plus-magnitude binary integer of 7 bits, and so I
can have values from —63 to +63. The largest number represented by this system
would have a maximum / and would be 63 x 2'3.

This example shows the use of a floating-point number representation system
to store ‘‘real’’ numbers of considerable range in a binary word.

One other widely followed practice is to express the mantissa of the word as
a fraction instead of as an integer. This is in accord with common scientific usage
since we commonly say that 0.93 x 10 is in ‘‘normal’* form for exponential
notation (and not 93 X 10%). In this usage a mantissa in decimal normally has a
value from 0.1 to 0.999. . . . Similarly, a binary mantissa in normal form would
have a value from 0.5 (decimal) to less than 1. Most computers maintain their
mantissa sections in normal form, continually adjusting words so that a significant
(1) bit is always in the leftmost mantissa position.

When the mantissa is in fraction form, this section is called the fraction. For
our 12-bit example, we can express floating-point numbers with characteristic and
fraction by simply supposing the binary point to be to the left of the magnitude
(and not to the right, as in integer representation). In this system a number to be
represented has value F X 2°, where F is the binary fraction and C is the char-
acteristic.

For the 12-bit word considered before, fractions would have values from
I — 27° which is 0111111, to = (1 — 27°), which is 1111111, where the
leftmost bit in each number is the sign bit. Thus numbers from (1 — 276 x 2!3

Values of floating-
point numbers in 12-
bit all-integer sys-
tems.
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to — (1 — 27% x 2'% can be represented. or about +32.000 to -~ 00. The
smallest value the fraction part could have is now the fraction 01000000, which is
27!, and the smallest characteristic, which is 27 '3, so the smallest positive number
representable is 27! x 27'3 or 27'%. Most computers use this fractional system
for the mantissa, although Burroughs and NCR use the integer system.

The Univac series of computers represents single-precision floating-point
numbers in this format:

1 2 9 10 36 bit number
S C F
1 T T

sign  characteristic  fraction part

bit 8 bits 27 bits

For positive numbers, the characteristic C is treated as a binary integer, the sign

bit is a 0, and the fraction part is a binary fraction with value 0.5 = F < 1. The

value of the number represented is 2€~'?* x F. This is called an offset svstem

because the value of the characteristic is simply the integer value in that portion

of the word minus an offset, which in this case is 128. So the exponent can range

from — 128 to + 127, since the integer in the characteristic section is 8 bits long.
As an example, the binary word

010000001 1100...0
sign  characteristic fraction
has value 2! 2 x % = 2 x 3 = 1.5. The representation for a negative number
can be derived by forming the representation for the positive number with the same
magnitude and then forming the 1s complement of this representation (considering
all 36 bits as a single binary number).

Another example of computers with internal circuitry which performs float-
ing-point operations and uses a single computer word representation of floating-
point numbers is the IBM series.

IBM calls the exponent part the characteristic and the mantissa part the
fraction. In the IBM series, floating-point data words can be either 32 or 64 bits
in length. The basic formats are as follows:

Short or single-word floating-point number:

S characteristic  fraction

0 1—7 8—-31

Long or double-word floating-point number:



S characteristic  fraction

0 1—-7 8—63

In both cases, the sign bit S is in the leftmost position and gives the sign of
the number. The characteristic part of the word then comprises bits 1 to 7 and is
simply a binary integer, which we call C, ranging from 0 to 127. The actual value
of the scale factor is formed by subtracting 64 from this integer C and raising 16
to this power. Thus the value 64 in bits 1 to 7 gives a scale factor of 16 7% =
1694 = 16% a 93 (decimal) in bits | to 7 gives a scale factor of 16~ % =
1693 -6 which is 16%%; and a 24 in bits 1 to 7 gives a 167,

The magnitude of the actual number represented in a given floating-point
word is equal to this scale factor times the fraction contained in bits 8 to 31 for
the short number or 8 to 63 for a long number. The radix point is assumed to be
to the left of bit 8 in either case. So if bits 8 to 31 contain 1000 . . . 00, the
fraction has value % (decimal); that is, the fraction is .1000 . . . 000 in binary.
Similarly, if bits 8 to 31 contain 11000 . . . 000, the fraction value is § decimal,
or .11000 . . . 000 binary.

The actual number represented then has magnitude equal to the value of the
fraction times the value determined by the characteristic. Consider a short number:

sign characteristic fraction
—_—— - - ~ r A )
Floating-point number: 0 1000001 1t 1 00...0
Bit position: 0 1234567 89101112 ...31

The sign bit is a 0, and so the number represented is positive. The characteristic
has binary value 1000001, which is 65 decimal, and so the scale factor is 16'. The
fraction part has vaiue .111 binary or % decimal, and so the number represented is
I x 16, or 14 decimal.

Again, consider the following number:

sign characteristic fraction
—h— ~ A N e A N
Floating-point number: 1 1000001 11t 00...0
Bit position: 0 1234567 89101112...31

This has value — 14 since every bit is the same as before, except for the sign bit.
(The number representation system is signed magnitude.)
As further examples:

sign characteristic fraction

0 7000011 110...0 16 x 2 = 3072
0 0111111 110...0 167" x 3 =&

Clearly a number of floating-point number systems exist, and each manufac-
turer has virtually a unique system. This can present a problem to system users

249

FLOATING-POINT
NUMBER SYSTEMS



250

THE ARITHMETIC-
LOGIC UNIT

since programs in high-level languages may yield different results on one computer
versus another. To alleviate this and several other problems, there is now a move-
ment underway to standardize on a floating-point number system which will be
made available by all manufacturers. The major effort in this area has resulted in
the IEEE Proposed Standard for Binary Floating-Point Arithmetic. This standard
is the result of work by several organizations (not just IEEE) and is widely sup-
ported, particularly by microcomputer manufacturers, several of which already
provide actual systems conforming to the standard.

The principal feature of the standard probably is the ‘‘hidden 1’ principle.
Floating-point numbers generally have their fraction (magnitude) part stored with
a leading 1 in the leftmost position. This is called normalized form; it ensures that
the maximum number of significant bits is carried in the number. The reasoning
behind the hidden 1 principle is that if the leftmost bit in the fraction (magnitude)
section is always a 1, why carry it? Instead, this section of the floating-point number
is shifted left one more bit and the 1 is discarded. However, in any reconstruction
of the number for external use or during calculations, the 1 is replaced.

The IEEE standard for floating point uses the hidden 1 principle. There is a
single and double format. Here is the single format.

Single format: I 8-> <23 bits—

S E F

where § is the sign bit, E is a binary integer, and F is a binary fraction of length
23. However, the value of F is formed by adding 1 to this fraction. Thus, if F in
this format is stored as 11000 . . . 00, the value of F is 1.11000 . . . 00, which
is 14 in decimal. The value of a floating-point number in this system is

V=(-1 x 26727 x |.F

Notice that this system uses an offset of 127 for the exponent (characteristic) value.
Here are three examples of the system:

FLOATING-POINT
FORMAT
(HEXADECIMAL)

(1) x 26727 x 1.F DECIMAL VALUE

3F800000 1x2°%x1.0 +1
BF800000 -1x2°x 1.0 -1
40400000 1x2'"x 15 +3

Note that fraction values for F range from 1 to slightly less than 2 (1 < value of
F<2).

Double format: 1 «—ll—> <52 bits—

S E F

where S is the sign bit, £ is an 11-bit binary intéger, and F is a 52-bit binary
fraction with binary point to the far left. However, the value for F is formed by



